Delay Tolerant Networking and Information Centric Networking

Kevin Fall, PhD
Qualcomm*
Dec 2, 2011 / GFIW2011

Networking Today

- Existing TCP/IP-based Internet
 - Every interface has 32 or 128-bit IP address
 - Identity and location tied together
 - Routing establishes single end-to-end path to host
 - Most traffic uses virtual connection (with TCP) using small best effort transfer unit (datagram)
 - Security of channels between hosts, firewalls
 - Early binding of host name to address
 - Binding security (DNSSEC) just starting

Motivations for Change

- DNS host table files too big and hard to manage
- CIDR routing scalability concerns
- IPV6 running out of IPv4 addresses

- TLS, IPsec, DNSSEC security
- Delay/Disruption Tolerant Networking
 - Not always connected
 - Not always using same networking stack
- Information/Content Oriented Networking
 - Connections to hosts not of paramount importance
 - Content caching and security are

ICN: What's Different

- Primary unit of networking is (data) object
- Names (IDs) are location independent
- Routing function is different
 - Routing toward IDs (content name based)
 - Mapping between IDs and locators at lower layer
 - Few/no graph-theoretic scalability results
 - Caching naturally included in model
- Security on the content (and access to it)

DTN: What's Different

- Primary unit of networking is (data) bundle
- Names (IDs) are flexible and late bound
- Routing function defined outside architecture
 - Routing toward IDs (strings) across protocols
 - (optional) mapping between locators and IDs
 - Caching can be naturally included in model
 - Custody transfer (incremental delivery)
- Security is on content and delivery agents

Bundles / Objects

- Bundle (DTN) is an object useful to application
 - "bundle together" interactions [tolerate big RTT]
 - Unit of retransmission / caching
 - Can be fragmented / encrypted
 - Has origin time and expiration time (and CoS)
- Objects (ICN) = useful content units
 - Unit of retransmission / caching / security
 - Named and found
 - Independent of hosts or immediate connectivity

Naming

- ICN names objects
 - In CCN (NDN), names are hierarchical
 - Receivers express interest, met by data (routing)
 - Opaque to network
- DTN expresses names using URIs
 - And leaves the URI scheme TBD (also opaque)
 - Provides the ability to use multiple schemes
 - E.g. use IP or MAC address if absolutely necessary

Routing and Forwarding

- DTN and ICN route on names (not addresses)
 - No fixed limit on size or # of identifiers
 - No issue (or need for) NAT
 - No major issue of re-binding or multihoming
- DTN routing has a concept of contacts
 - And times/durations they become active
 - Lots of schemes in literature (some have loops)
- ICN (NDN) routing can be naturally multipath
 - With loops avoided by recognizing interests/data
 - Cannot address particular hosts (no prefix hijacking)

Late and Early Binding

- DTN supports early or late binding
 - Early: as with DNS, map name to location
 - Late: forward until mapping required
- ICN supports a form of (very) late binding
- Observations:
 - Early is especially useful for config/debug
 - Late is a tradeoff of flexibility vs latency
 - Binding requires its own security mechanism

Transport

- DTN usually has a DTN and convergence layer
 - DTN layer- schedules links, proactive fragmentation, replication, subscriptions
 - CL- adapts bundles for transport on other protocol
 - Custody transfer keeps forward progress
- ICN (NDN) leaves most transport issues to app
 - Assumes unreliable transport but caching
 - Proactive caching keeps forward progress
 - Even if disconnection / disruptions occurs
 - "Any layer 2"

Security Model

- Today: mostly access and channel security
 - 802.1X, EAP, IPsec, TLS [endpoint mostly host]
- A few exceptions that focus on content
 - DNSSEC [observes sender maybe != author]
- Basic needs for content security [at network]
 - Integrity
 Authentication
 Confidentiality
 Provenance
 Availability

 REGISTERS
 FINDS
 Content
 (in pub/sub systems)

The Basics

- Integrity
 - Can bind content to a name via a hash
- Authentication
 - Stronger than integrity, requires demonstration of key
 - Must cached data (or REGISTERs) be authentic? [policy mgmt]
- Confidentiality
 - Requires usage of key to perform encryption
 - Must cached data (or FINDs) be confidential? [policy mgmt]
 - End-to-end encryption can frustrate in-network processing
- Provenance
 - Can follow chain of modification (with integrity and authentication)
- Availabilituy
 - Resources that can be attacked via DoS
 - Storage, communication channels, computation

(Data) Access Control

- Many people want controlled sharing of their private information
 - But don't really like DRM [many reasons...]
- Establishing the threat and trust model
 - Does Bob trust his private content on Alice's system?
 - The DRM problem usually not safe if software-only
 - Does Alice trust (anybody's) content on her system?
 - Isolation, sandboxing, taint tracking, IFC

Availability Concerns

- New potential areas for DoS in ICN
 - REGISTERs and FINDs both generate traffic
 - Anonymity already built in if no source ID concept
 - Long ID parsing
 - Fragmentation interaction (e.g. with signatures)
 - Crypto processing
- And in DTN
 - Custody store, registrations, unsolicited traffic, long expirations

Common Research Themes

- Routing / forwarding scalability
 - Objects not constrained by physical topology size
 - Long, variable-length names not like fixed 32 bits
 - Discovery of local nodes/objects/attributes
- In-network storage management
 - Cache eviction, custody, DoS resistance, priority
 - Multicast operations over time
- Security and privacy
 - Scalability, revocation, resource exhaustion
 - Content/policy-enforcing gateways

Conclusion

- DTN originally designed for two things
 - Dealing with radical heterogeneity in networks
 - Tolerating delay and disruption
- ICN designed for the efficient dissemination of information and content
- Several features in common
 - Long term storage in routers, incremental delivery, routing on names, security on objects
- DTN can serve as the underlying transport
 - Possibly the other way as well
 - But must ultimately travel on *some* network not defined by either DTN or ICN

Thanks

www.dtnrg.org kfall@qualcomm.com